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Abstract— Recent work in the domain of classification of
point clouds has shown that topic models can be suitable
tools for inferring class groupings in an unsupervised manner.
However, point clouds are frequently subject to non-negligible
amounts of sensor noise. In this paper, we analyze the effect
on classification accuracy of noise added to both an artificial
data set and data collected from a Light Detection and Ranging
(LiDAR) scanner, and show that topic models are less robust
to ‘misspelled’ words than the more näive k-means classifier.
Furthermore, standard spin images prove to be a more robust
feature under noise than their derivative, ‘angular’ spin images.

We additionally show that only a small subset of local
features are required in order to give comparable classification
accuracy to a full feature set.

I. INTRODUCTION

Labeled three-dimensional models of indoor environments
are useful in applications that range from robotic interaction
to augmented reality. Virtual reality telepresence applications
often require the transmission of a large virtual environment
in which a ‘visitor’ can immerse themselves [1]. However,
the transmission of a fully detailed virtual representation
of a real environment is costly and time-consuming. Ways
to compress a scene are therefore of high value to such
applications. One such method is to recognize repeated
components, and only transmit one instance of each. The
scene can then be fully reconstructed at the visitor’s end
with only a small fraction of the original geometry being
transmitted and minimum loss of veracity.

However, most current systems for procuring such labeled
models rely on user input, either to manually label indi-
vidual objects or to label a training set that is then used
in a supervised classifier to identify the remaining objects.
Such methods are laborious, prone to human bias and most
importantly rely on each object that is to be identified in the
final scan as having been seen at the user input stage [2].

Topic models have become an extremely popular method
for unsupervised object classification. These models were
initially developed to identify, in a wholly unsupervised man-
ner, common themes in discrete inputs such as text corpora.
Authors have recently shown that the same principles can be
applied to other forms of sensor data including images [3]
and depth maps [4]. Topic models have been used to create
recognition algorithms that allow objects to share parts [5],
and to automatically classify both high-level and low-level
object primitives [4].
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Fig. 1. Examples of the types of object being classified.

The performance of any classification system is strongly
determined by the saliency of the feature descriptors used. In
the original text-based application of topic models, features
consist of individual words. However, when using data from
sensors, numerous feature descriptors can be used with
different parameterizations. Furthermore, almost all sensing
systems are corrupted by non-negligible amounts of mea-
surement noise.

Authors have previously examined the effect of noise
supervised classification of text data; for example [6]. In
this paper, we perform a systematic study of the effects of
classification routines, when the input point cloud data is
subject to noise. We use both artificial and real datasets to
evaluate classification performance, using both dissimilar and
similar sets of objects.

In section II we outline the types of features commonly
used in 3D object classification, before introducing features
and their conversion to words in sections III. In section IV
we then describe the methods used in this paper, and describe
the workings of generative topic models. Our results are
presented in section V, and section VI states our conclusions
and discussion for further work. We find that topic models are
more sensitive to noisy input data than traditional classifiers
such as k-means, and additionally show that only a small
number of features are required for a good classification
performance.

II. THE UNSUPERVISED CLASSIFICATION PROBLEM

The goal of unsupervised classification is to assign a label
li to each object wi in a set (corpus) of M distinct objects
D = {w1, . . . ,wM}, such that objects with common labels
are in some way ‘similar’. In this paper we focus on three-
dimensional geometry, and aim to assign common labels to
objects that are similarly shaped. Shape in itself allows for
the type and use of many different objects to be identified,
and in the context of scene transmission, shape and texture
are the only required properties to give an accurate visual
representation of objects.



A. Classification Algorithms

Many clustering algorithms exist for grouping items, for
instance Gaussian mixture models, k-means and k-medioids.
These have previously been used for unsupervised classifica-
tion of 3D objects [7] and images [8]. In recent years, various
forms of topic model have been used for unsupervised
discovery of themes in text documents [9], images [2] and 3D
objects [4]. Rather than relying on distance metrics in feature
space, topic models are generative models that provide a
probablistic approach to classification.

B. Latent Dirichlet Allocation

Topic models are a family of generative statistical models
used to find common themes, or topics in a corpus D Each
document wj is represented as a sequence of N discrete
words wj = (w1, . . . , wN ). Latent Dirichlet Allocation
(LDA) is a popular topic model proposed by Blei et al. [9],
where each word wi is assumed to be drawn from a multi-
nomial distribution associated with a hidden topic variable
zi 2 {1, . . . ,K}, and each zi is drawn from a multinomial
distribution over topics associated with the document wi.

In our work, we make use of David Blei’s C implemen-
tation of LDA1, which infers the mixtures of topics and
mixtures of words through Gibbs sampling. We omit full
details of the generative model and the steps for inference
for reasons of space; see [10] or [4] for full details.

III. USING LOCAL FEATURE DESCRIPTORS AS WORDS

As with previous work such as [4], [11], we make use of
local features for classification, which provide a description
of an object in a neighborhood Np of a specific scan point
p = (x, y, z). In contrast to many object-level features,
local features are not vulnerable to occlusions, tend to be
orientation invariant and allow for point-wise classification
of unsegmented objects. One widely-used example of a local
feature is the ‘spin image’.

A. Spin images

Spin images are a descriptor proposed by [12] for locating
objects in cluttered 3D scenes with multiple occlusions; they
have become a staple feature in classification work (see, for
example, [13] and [14]). The spin image at point p is a
2D array formed by orientating a grid with its normal, and
rotating it through a full circle. Each cell in the grid array
‘accumulates’ each point that falls into it, eventually storing
the total number of points. As the array is orientated with
the surface normal at p, and the rotational position of points
around this normal are ignored, spin images are invariant to
both the position and the orientation of the object.

Parameters affecting the spin image are the support dis-

tance (representing the volume of the scan used to construct
the image) and the raster resolution (the number of cells in
the 2D histogram). By adjusting the support distance, spin
images can be converted from a global to a local descriptor,
and from a less to a more discriminating feature [15].

1Available from http://www.cs.princeton.edu/

˜

blei/.

Spin image Angular spin image

Fig. 2. The sensitivity of standard and angular spin images to sampling
density. Standard spin images are highly vulnerable to changes in the
sampling density, while angular spin images are more stable. Crosses in
the angular spin images indicate cells into which no points fell, which are
differentiated from cells in which the average angle is zero.

To help account for noise in the input data, Johnson et
al. [12] proposed bilinear interpolation to smooth the image,
spreading the contribution of each data point to its four
neighboring cells.

B. Angular spin images

A variation of standard spin images was proposed by
Endres et al. [4], where each cell records the average angular
discrepancy between the normal at p and the normal of
each point falling into the cell. As well as capturing more
information about the object’s shape, this measure helps to
deal with inconsistency in scanning density; the bin values
are inherently normalized in the range [0,⇡], whereas the
bin values in standard spin images vary with the scanning
density (Fig. 2). Angular spin images were shown by [4]
to have improved classification accuracy over standard spin
images, when used with topic model classifiers.

C. Computation of Normals

Features such as spin images rely on accurate estimates of
surface normals, even in the presence of noise. Because the
values in angular spin images rely on the estimated normals
in the neighborhood Np as well as at p, we hypothesize that
they are more sensitive to errors in normal estimation than
standard spin images.

A common approach to normal estimation in unstructured
point cloud data is to fit a plane to the points in the neigh-
borhood Np. A larger size of Np filters out high frequency
noise, at the expense of missing surface details.

Cole et al. [16] define Np as the k-nearest neighbors of
each point, and account for noise by adaptively increasing
the value of k when the condition number of the plane fit is
poor. Mitra et al. [17] use a neighborhood radius approach,
where Np = {pi : kpi�pk < r}. They analyze a systematic
way of estimating normals in noisy data, deriving a formula
for finding the lowest bound on error at each point based
on sampling density, local curvature and the level of noise.
However, their method still requires two parameters to be
empirically found for each dataset.



D. Conversion from local features to words

To convert local features to an object level, histograms are
often generated over the values of local features ([13], [18]).
Each histogram bin can then be directly used in the object’s
feature vector. In applying this to spin images, Endres et al.
[4] discretize the values in each individual spin image to
one of a set number of values. Each unique spin image in
the corpus is a word in the vocabulary (or equivalently a di-
mension in the feature vector). This conversion from local to
object features means the classifier operates under the ‘bag-
of-words’ assumption, which allows for interchangeability of
word order in a document.

E. Classification in noisy scan data

Noise in LiDAR scans is caused by inaccuracies in the
laser beam transmitter and receiver, and from multiple and
imperfect reflections off different surface types.

Previous work has added artificial noise (i.e. misspellings)
to text corpora to analyze the effect this has on classification
performance; see, for example, [6]. Misspelled words in
natural languages have different properties to visual words as
words are more likely to be misspelled in similar ways (for
example typographical errors or common spelling mistakes).
Much work in dealing with noise in text therefore aims
to correct misspellings. Noise in our case is a corruption
over all words, in a far less predictable way (the noise
present in LiDAR varies with a multitude of factors such
as temperature, ambient lighting and distance to scanner,
to name a few [19]) and there is no dictionary of ‘correct’
spellings.

While classifiers tend to be robust to noise to some extent,
we are interested in seeing what combination of features and
descriptors perform optimally as noise is increased in the
input data.

IV. METHODOLOGY

To establish the effect of noise on classification, we used
two datasets; the first was an artificial dataset, to which we
could add arbitrary amounts of noise. The second is a dataset
of real objects captured with a LiDAR scanner.

A. Artificial data generation

To examine the effect of noise, we generated an artificial
dataset consisting of four differently shaped objects; tall
cylinders, short cylinders, spheres and cuboids (Fig. (a)).
We generated five instances of each class, with only the
viewpoint changing between each instance. The objects were
‘scanned’ at an equivalent distance of 2 m, at an angular and
azimuth resolution of 0.054�—this represents a typical ‘mid-
resolution’ scanning density on the Faro scanner.

Artificial Gaussian noise, with mean �n, was added to each
point, along the direction of the ray cast. This simulates the
type of noise present in LiDAR scans (Figs. (b)–(d)).

(a) �n = 0.0

(b) �n = 0.002 (c) �n = 0.005 (d) �n = 0.010

Fig. 3. Different levels of distance noise applied to artificially generated
objects.

B. LiDAR Dataset

We collected our LiDAR dataset using a FARO Photon
120 phase-shift laser scanner. We scanned at a resolution
one-fifth of the maximum resolution at a scanning distance
of 2 m, giving a density of approximately 38 points/cm2;
this represents a typical range that may be used in a virtual
reality application.

The data set consists of four different classes—mugs,
books, confectionery and fruit. Four instances of each class
exist—so, for example, there are four types of mug—and we
took four scans of each object instance, at various poses. In
our experiments we aim to separate the 64 objects into their
four ground-truth class assignments.

As with the artificial dataset, we added artificial Gaussian
noise to the LiDAR data, to simulate data collected in an
environment more susceptible to noise.

Fig. 4. Point cloud data of the type being classified. From top to bottom:
mugs, books, fruit and chocolate bars. See also Fig. 1.

C. Pre-processing

As in previous work ([4], [20], [18]), we focus on classify-
ing objects sufficiently widely spaced to be separated from
both the background and each other using straightforward
segmentation techniques. Segmenting objects in point clouds
without classification cues is less challenging than in images,
as the 3D data gives more clues as to suitable partition
boundaries. In man-made environments in particular, the pla-
nar nature of the surroundings allows for isolated foreground
objects to easily be separated from the background and other
objects through simple methods such as min-cut graph-based
algorithms [20] or 2 1

2D bounding boxes [18]. We leave the



(a) (b) (c) (d)

Fig. 5. The pre-processing steps used to create distinct objects from point
cloud scans. (a) the table plane is located and removed using a RANSAC
algorithm . (b) The computation of normals. (c) Floating pixels are identified
as those points having normals close to perpendicular to the scan beam. (d)
Finally, a distance-based algorithm is used to separate the data.

challenge of simultaneous segmentation and classification
using topic models as further work.

To segment our LiDAR data set, we used a RANSAC
algorithm [21] to detect and remove the desktop surface that
the objects sit on. We then used distance-based clustering to
separate the point cloud into distinct scan segments.

The surface normal at each point p in both the artificial
corpus Dart and the LiDAR corpus Dlidar was estimated
by fitting a plane to its k-neighborhood using the method
of least squares. As in [16], we adaptively increase the
k-neighborhood size when the conditioning number of the
plane fit (ratio of largest to smallest eigenvectors of the
covarience matrix) was below a certain threshold. For our
scan data, we empirically found that a good fit was achieved
by iteratively increasing k from 75 up to 200, stopping when
the condition number of the plane fit either rose above 25 or
started to fall, indicating a maximum had been found. This
typically equated to a radius of inclusion of between 1 and
2 cm.

Estimating the normals through plane-fitting leads to an
ambiguity, in that each normal could point in one of two
directions from the surface. We use the fact that our data is
collected from a single viewpoint to resolve this ambiguity.

Around the edges of foreground objects in Dlidar, the
laser beam is often reflected from both the object and the
background. This causes floating or mixed pixels, which ap-
pear as data points between the foreground and background
(Fig. 5(c)). We identify these points as those having an
estimated surface normal approximately (i.e. within 0.025⇡)
perpendicular to the direction of the scanner beam.

Our final, segmented LiDAR dataset thus consists of 64
separated objects, made up of a total of 207 695 points.

D. Feature Computation

For each point in both Dart and Dlidar, we computed
both standard and angular spin images over a range of
parameter settings. Preliminary experiments confirmed the
findings of Endres et al. [4] that low resolution spin images
gave optimum classification performance. We experimented
over five values of resolution and support distance, and found
that 4⇥4 angular spin images with a horizontal and vertical
support distance of 20 mm gave the best classification. We
accept the limitation in our approach that these parameters
were hand-refined rather than selected adaptively.

Unlike standard spin images, a zero-valued cell in an
angular spin image does not indicate that no points fell into
it, but instead indicates that the average angle difference was
zero. To differentiate between zero angle difference and zero
points falling into a bin, we indicated these empty bins with
a NaN value (Fig. 2), thus augmenting angular spin images
to contain an extra degree of saliency.

E. Conversion to Words

To convert the continuous spin images to discrete words,
we quantized the values in each cell. When quantizing the
spin images, the values in each cell in the angular spin
images were quantized from [0, 2⇡] to T discrete values.
We experimented with T = {2, 6, 10, 14, 18}, and found
T = 6 gave the highest classification rate. As the values in
standard spin images are unbounded, we found that similarly
quantizing to a fixed number of values led to the largest
values biasing the conversion of the smaller values. Instead,
we found we achieved a better classification rate by rounding
the cell values to the nearest multiple of T 0; experimentation
led to a value of T

0 = 35 being selected, which gave good
classification results for our data. Each unique spin image in
the corpus was then used as a dimension in the feature space
of the corpus.

F. Classification

Once the feature vectors were computed, a number of
different classification algorithms were used. k-means was
used on normalized feature vectors; 50 multiple replicates
were run to reduce the algorithm’s sensitivity to initial
choice of cluster centers. Our experiments found that using
the cosine distance between feature vectors gave a better
performance than Euclidean or Manhattan distance.

Occasionally the LDA classifier would assign one topic to
two classes, and leave one topic with a low representation
in all objects. In these cases, where the number of unique
assigned topics was fewer than the topics being looked for,
we would discard the result and repeat the classification.

V. RESULTS AND EVALUATION

A. Evaluating the accuracy of unsupervised classification

Unlike supervised classification, in unsupervised learning
the ground truth relates to the partitioning rather than ab-
solute labeling; there is therefore no natural concept of a
‘correct’ label for any one object. However, we know that
for an unsupervised classification method to be accurate, it
should ensure similar objects are assigned to the same cluster,
and dissimilar objects to different clusters.

To capture these requirements, we use the Adjusted Rand
Index (ARI) [22] to compare the ground truth with the
inferred labels. Given a ground truth labeling {g1, . . . , gM}
and our inferred labels {l1, . . . , lM}, each pair of objects
{(wi,wj)|1  i < j  M} is assigned to one of four sets.
The cardinalities of these sets, a, b, c and d, are described
in Table I.

The ARI is then computed as



TABLE I
THE FOUR SETS USED FOR CALCULATION OF THE ARI

Ground truth

Inferred label Pair in same group Pair in different groups

Pair in True positive False positive
same group a pairs b pairs

Pair in False negative True negative
different groups c pairs d pairs

ARI =

�n
2

�
(a+ d)� [(a+ b)(a+ c) + (c+ d)(b+ d)]
�n
2

�2 � [(a+ b)(a+ c) + (c+ d)(b+ d)]
(1)

An ARI of 1 indicates a perfect partitioning, while an ARI
of 0 represents a partitioning no better than chance.

As this metric requires absolute label values to be given
and cannot use mixtures of labels, for the LDA results we
use the most strongly weighted topic assignment for each
object as its inferred label.

It was noted that the classification routines gave fairly
inconsistent results under the same inputs. LDA in partic-
ular would tend to give a range of different classification
outcomes under multiple reruns. For this reason, we repeated
the classifiers several times and averaged the results, in order
to give an indication of an expected performance.

B. Effect of noise on classification performance

The Gaussian noise applied to the artificial data had a
noticeable effect on classification performance, while the
noise added to the LiDAR dataset was less detrimental
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(a) Effect of noise on artificial dataset
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(b) Effect of noise on LiDAR dataset

Fig. 6. Effect of noise on classification performance, for both standard
spin images and angular spin images. At each noise level, the classification
was repeated 10 times and an average taken to generate the points plotted.
Classification performance is measured with the Adjusted Rand Index; 1 is
perfect classification, 0 is no better than chance.
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(a) Artificial dataset (44,680 features at 100%)
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(b) LiDAR dataset (207,695 features at 100%)

Fig. 7. Effect of the number of features used on classification performance
of the objects in the LiDAR (b) and artificial (a) datasets, with no noise
added. A random subset of the total features (bilinearly interpolated angular
spin images) present in the corpus were taken.

(Fig. 6). We reason that the more realistic LiDAR dataset,
while more noisy to start with, had more descriptive features
(such as mug handles) than the simplified artificial dataset,
which help to differentiate the classes. For our datasets, the
traditional spin images outperform the angular variety as the
noise is increased, as hypothesised. We attribute this to the
higher order effects of noise present in angular spin images.
When computing standard spin images, noise in the data will
affect the direction of the normal at p and will cause some
data points to fall into incorrect cells. Angular spin images
will suffer from these effects together with further effects
from variation in the values of the points being accumulated.

It is interesting that k-means outperformed LDA as a
classifier as noise increases. We suspect that this is due to
the ‘soft’ nature of assignment in LDA; we are looking for
a hard topic assignment, while topic models assume the data
is composed of mixtures of topics.

C. The effect of number of features used on classification

performance

To analyse the effect of feature density on classification
performance, we took a random subset of p% of the standard
spin images in the corpus, and ran the classifiers (Fig. 7).
As can be seen, while more features tend to improve the
performance, the classification rate does not significantly
improve above 10%. This has strong implications for creating
computationally efficient classification algorithms, as the
generation of the spin images is among the more time
consuming part of the process (Section V-D).



TABLE II
TIMINGS FOR ONE RUN THROUGH THE CLASSIFICATION PROCESS

Process Time (s)

Pre-processing
Plane removal (16 scans) 9.9
Computation of normals 143.7
Removal of floats and outliers 54.5

Feature computation Angular spin image 26.2
Spin image 21.7

Classification
Conversion to words 0.07
k-means 0.4
LDA 2.2

We reason that this is an effect of the repeated nature of
features within objects, particularly when sampled at such a
high density as the laser scanner; only a few of the features
are required in order to give a salient representation.

D. Timings

In Table II we present timings for the computation of
each stage in the processing algorithm, for the complete 64-
object dataset consisting of 207,695 data points. All code
is unoptimised MATLAB code, with the exception of Blei’s
LDA classification package which was written in C. Timings
are for running on a 2.4 GHz Intel Core i5 processor, and
code was parallelized where possible.

For the classification we used 10% of the features. Objects
were captured in (and planes removed from) 16 separate
original scans. k-means and LDA timings are for 1 algorithm
replicate.

As can be seen, the computation of normals is the most
time-consuming part of the process. Use of constructs such
as kd-trees could significantly improve the quoted speed.

VI. CONCLUSIONS AND FURTHER WORK

In this paper, we perform further investigation on previous
work using topic models on range data classification. We
have shown that noise can have a significant effect on the
classification rate when using local feature descriptors for
classification. Latent Dirichlet Allocation is shown to be
more sensitive to noise than k-means, and standard spin
images are shown to perform better than the angular variety
for our data. We additionally have shown that only a small
subset of features are required to provide a classification
performance equivalent to a full feature set.

As with previous work, we have focused on classifying
pre-segmented scan objects; we would like to introduce the
simultaneous classification-segmentation paradigm to range
data processing to allow for closely spaced objects to be
segmented. We would additionally like to use a method
such as hierarchical Dirichlet processes to automatically
infer the number of classes present. While we demonstrate
that only a small number of features are required for a
good classification performance, this could potentially be
further reduced by using visual algorithms for saliency to
automatically select the most relevant features.
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