
Learning to Discover Objects in RGB-D Images
Using Correlation Clustering

Michael Firman Diego Thomas Simon Julier Akihiro Sugimoto

Abstract— We introduce a method to discover objects from
RGB-D image collections which does not require a user to
specify the number of objects expected to be found. We propose
a probabilistic formulation to find pairwise similarity between
image segments, using a classifier trained on labelled pairs from
the recently released RGB-D Object Dataset. We then use a
correlation clustering solver to both find the optimal clustering
of all the segments in the collection and to recover the number
of clusters. Unlike traditional supervised learning methods, our
training data need not be of the same class or category as the
objects we expect to discover. We show that this parameter-
free supervised clustering method has superior performance to
traditional clustering methods.

I. INTRODUCTION

Many tasks in robotics require high-level reasoning about
the environment. This can only be achieved through recognis-
ing objects, typically from visual sensor data. However, most
existing approaches are limited to what can be learned from
hand-labelled training data. Training data is expensive to
produce, subject to human bias and most importantly limits
the number of objects that can be recognized to those present
in the training set. For example, while the impressive RGB-D
object dataset [1] contains views of 300 objects, there are
around 12,000 distinct items in the current IKEA product
range alone [2].

We therefore reason that there are too many different
things in the world to apply semantic tags from hand-labelled
training data with supervised learning. Instead, we focus on
the problem of the unsupervised discovery of objects. A large
fraction of objects within our world are visually identical.
That is, for each instance of such an object there exists
in the world other things that have the same size, shape
and appearance. Given an image collection, we expect to
be able to recover each repeated object’s properties such as
its size, shape and color. In addition, we should be able to
simultaneously find the location of each such object in each
image (Fig. 1). Representative views of these objects can
then be presented to a human user for labelling, or a robotic
system can attach learned information to each discovered
item without ever knowing its human-readable name.

We follow recent works such as [3], [4], [5] in focusing
on object instance discovery rather than class. That is, we
consider objects which are visually identical to be similar,

M. Firman and S. Julier are with the Department of
Computer Science, University College London. {m.firman,
s.julier}@cs.ucl.ac.uk

D. Thomas and A. Sugimoto are with the National Institute of Informat-
ics, Tokyo. {diego thomas, sugimoto}@nii.ac.jp

M. Firman was partially supported by an International Internship Grant
from the National Institute of Informatics, Tokyo.

Fig. 1. An example of our object discovery results on four of the 36 images
in our test set D2. The colored boundaries and the dashed lines between
segments indicate found object types. Note that matches are found in spite
of large changes in viewpoint and poor segmentation at object boundaries.
Our algorithm performs clustering of segments without user parameters such
as the number of objects to be found.

rather than objects with the same semantic label. For exam-
ple, we consider a tall red mug to be different from a short,
blue one.

Many recent object discovery algorithms operate by first
hypothesising segmentations of a scene, before grouping
segments together using a clustering algorithm (e.g. [4],
[6]). However, most such algorithms require a human user
to specify parameters to control this grouping, typically
the number of objects to be found. We consider it to be
unreasonable to expect an autonomous system to require this
level of supervision. Instead, we present a principled method
for finding matching groups of segments, where we use a
small set of pairs of hand-labeled training images to learn a
probability measure that two segments should belong in the
same cluster. While we use a supervised classifier, the train-
ing data need not be of the same type or class as the objects
to be discovered, as the training data is only used to learn
a measure of similarity. Furthermore, just a small selection
of training examples can be used to discover many different
types of objects. We then use correlation clustering [7], [8] to
recover the correct segment grouping and automatically find
the number of clusters, without relying on user parameters.
We have released code of work presented in this paper,
available at www.cs.ucl.ac.uk/staff/M.Firman.

For our work, we exploit the increasing prevalence of

depth cameras, and make use of the Microsoft Kinect scanner
to capture static RGB-D frames.

II. PROBLEM STATEMENT

We reason that many objects found in the world can
be considered as instantiations of abstract object templates.
Each template can be thought of as a mold which holds
information on the three-dimensional shape and size of
the object, its color, texture, material and other physical
properties. We define a scene as being a set of one or more
object instantiations together with background environment
(e.g. walls and floors), and further properties such as lighting
and background color. Each scene is then captured in a single
static RGB-D image D.

The aim of our object discovery system is to recover the
number of object templates and each of their appearance
models, given a set of input RGB-D images {D1...N}. The
secondary aim of object discovery is to recover the set of
pixels in each image corresponding to each object.

III. RELATED WORK

Most object discovery algorithms in the vision and
robotics communities operate in a similar way; by first
segmenting the scenes into regions, then matching together
similar regions. For example, Shin et al. [3] recover object
templates by finding matches in feature space and confirming
via alignment of the parts in 3D space. Endres et al. [6]
use topic modelling to assign each segment from a scan to
a separate cluster. While their results are impressive, this
approach relies on a user-specified number of classes and
is not robust to the inclusion of ‘noisy’ segments which do
not correspond to any objects. Kang et al. [5] use multiple
alternative divisions of each of their images to increase the
chance of finding well-matching segmentations. They present
impressive results on 2D images, but rely on some user
thresholds to determine similarity measures. They perform
object discovery on the network of pairwise matches using
a graph-based community discovery algorithm.

Herbst et al. [4] present a novel segmentation concept,
using the difference between two views of the same scene to
accurately segment objects which have been moved. Their
clustering algorithm is spectral clustering [9], which relies
on a clean dataset; they manually remove noisy segments
before applying their clustering algorithm. Similarly, affinity
propagation [10] is a clustering algorithm used by Triebel et
al. [11] to find objects which occur multiple times in indoor
laser scans.

All of these algorithms reduce the more difficult scene
understanding problem down to some form of clustering
problem. The goal of clustering is to assign a label yi to each
item in a set of M distinct items, such that similar items
have identical labels while dissimilar items have different
labels. This stated objective for clustering raises the obvious
question of what we mean by the terms similar and differing.
Looking at different aspects of objects’ properties may give
different clusterings, and for each property there are various
degrees of ‘similarity’. In fact, many clustering methods

avoid ever formally defining these measures, and instead rely
on good input data and one or more user specified parameters
in order to constrain the problem. These parameters may
be the number of clusters required (e.g. k-means [12] or
spectral clustering [9]) or another measure (e.g. datapoint
‘self-similarity’ for affinity propagation [10]).

Furthermore, clustering in Euclidean feature space is
highly sensitive to the scaling of features; e.g. a feature in
the range [0, 200] would have a far larger influence than one
in the range [0, 0.1]. Even after suitable scaling of features,
most clustering algorithms treat each feature as being equally
important, when in fact it is likely that there are some
features which are far more important than others for the
task in hand. This makes distances in Euclidean space poorly
suited to matching feature vectors. Finally, most clustering
algorithms are very sensitive to the inclusion of singleton
data points, which do not belong in any clusters. Many
object discovery algorithms assume such ‘noisy’ segments
are removed before the clustering stage (e.g. [6], [4]).

Our method for object discovery is inspired by recent work
by Vicente et al. [13], who find accurate segmentations of
objects in pairs of images by learning a similarity measure
from pairs of ground truth segmentations. However, they
cannot perform object discovery as they are limited to only
one class of object at a time, and exactly one object instance
is assumed per image. Our use of a correlation clustering
solver [8], [7] means we do not face this limitation, and
its combination with a Random Forest classifier [14] allows
us to avoid the problems we have outlined associated with
typical clustering methods.

Concurrently with our work, Collet et al [15] tackled
the problem of object discovery using pairwise measures
between image regions. In contrast to their graph-based
approach, we use probabilistic methods to find our pairwise
relationships and final clustering.

IV. METHODOLOGY

Our algorithm comprises of four stages. Firstly, we seg-
ment our images into regions, before computing a feature
representation of each region. We then find the probability
that each pair of regions depicts the same object. Finally, we
use these pairwise probabilities to group mutually consistent
segments (Fig. 2).

A. Segmentation

We desire an object segmentation algorithm which will
accurately delineate the boundaries of individual objects
within each image D, i.e. to propose a set of regions
{R1,...M}, where Ri ⊂ D, such that each object’s projection
in the image space will have a large overlap with exactly one
region.

We first detect and remove large planar regions from our
scenes with the RANSAC implementation of [16]. To form
complete object segmentations, we then use a simple top-
down segmentation, placing pixels in the same region if they
are neighbors in image space and the 3D spatial distance
between them is less than a threshold td. For our data we

(a) Inputs: N RGB-D images

· · ·

⇓
(b) Segmentation pipeline

i) Input RGBD image ii) Planes removed iii) Spatial separation
⇓

(c) Pairwise probabilities pij

Pr

([
=

])
= 0.581 Pr

([
=

])
= 0.202 · · ·

⇓
(d) Correlation clustering to find matches

· · ·

Fig. 2. Pictorial overview of our algorithm

found td = 0.04 m works well. Finally, regions for which the
majority of their boundary is shared with the image border
are removed. An example segmentation pipeline is shown
in Fig. 2(b). Notice that some of the regions correspond to
actual objects, while other, ‘clutter’ regions form parts of the
wall or small sub-parts of objects in the scene. This initial
segmentation of our RGB-D scenes is not a main focus of this
work, and for more complex and cluttered scenes we expect
that a different segmentation method will be required.

B. Feature vector representation of each region

We map each regionRi to a feature vector xi, with the aim
of removing some of the non-discriminative information con-
tained in Ri (such as pose), while retaining the information
relevant to our final objective (such as size and shape). We
use a selection of standard features from vision and robotics
to achieve this; these are listed in Table I.

C. Pairwise scores between regions

Given a pair of image regions (Ri,Rj), we want to know
the probability pij that the two regions should be placed
in the same cluster, i.e. that they depict the same object. As
many of the regions in our test set will be background clutter
(see Fig. 2(b)), we assert that pij is the probability that the
two regions should take on the same label and both represent
valid objects:

pij = Pr(yij ∧ ξi ∧ ξj), (1)

where yij indicates whether both regions take on the same
label or not (i.e. yij ≡ [yi = yj], where [•] is the Iverson
bracket) and ξi denotes the event that region Ri actually

TABLE I
THE FEATURES USED IN OUR EXPERIMENTS

Feature name Type Dimension

Bounding box size2 Size 3
Spin Image histogram [17] Shape 50
RGB histogram of gradients Texture 9
Mean RGB values Color 3
Shape distribution [18] Shape 50
Histogram over RGB values Color 64
2 Aligned to principal axes of 3D points. Σ = 179

depicts a single object as opposed to background clutter
or a part of one or more objects. We use the definition of
conditional probability to reformulate (1) like so:

Pr(yij ∧ ξi ∧ ξj) = Pr(yij | ξi ∧ ξj)Pr(ξi ∧ ξj) (2)

We now describe how we compute each of the two
quantities on the R.H.S of (2).

1) Computing Pr(yij | ξi ∧ ξj): In our work we seek
to directly learn Pr(yij | ξi ∧ ξj), using a small set of
segmented, labeled regions as training data. For each pair
of regions we create a pairwise feature vector

xij = |xi − xj |. (3)

Each xij is therefore of the same dimension as xi; each el-
ement of xij captures a difference in one feature dimension.

We then use a supervised learning algorithm, supplied with
training data in the form of pairs of masked object regions.
Each masked region in the training set is a complete view
of a single object (i.e. Pr(ξi) = 1). Each pair of training
objects thus constitutes a training example (xij , yij). The
training dataset we use is described in section V-A.

In our work we make use of the Random Forest classifier
[14]. A Random Forest is a set of decision trees, each of
which is trained on a different subset of the training data.
At test time, each tree votes for a class (in our case, the
classes correspond to (yij |ξi∧ξj) and (¬yij |ξi∧ξj)), and the
fraction of votes for each class can be used to approximate
a probability of class membership [19]. Random Forests are
well suited to our purpose, as they automatically select the
features most suitable for separating the classes and they
examine each dimension separately, making them robust to
different scaling of each feature (unlike e.g. SVMs).

2) Computing Pr(ξi ∧ ξj): To compute the probability
that both regions are valid objects, we exploit their inde-
pendence, i.e. Pr(ξi ∧ ξj) = Pr(ξi)Pr(ξj). Each unary
probability Pr(ξi) is computed using the Neural Network
formulation of Silberman et al. [16], trained on their NYU
dataset. Each region in their dataset is hand-labeled as being
either ‘furniture’, ‘wall’, ‘ceiling’ or moveable ‘props’ such
as pillows or bottles, and they train a Neural Network to
give a class membership probability for any new segment.
We find that using the probability for being a member of the
‘prop’ class or the ‘furniture’ helps to capture the property of
being an object. We use the sum of these two class outputs

as our estimation for Pr(ξi). An analysis of the performance
of this classifier is given in section VI-B.

D. Finding matching groups of segments

It is tempting at this stage to simply place pairs of
segments which have a high pij value in the same cluster.
However, our probabilistic interpretation of pij (i.e. as the
parameter for a Bernoulli distribution) implies that there is a
probability 1−pij that regions (Ri,Rj) should not be placed
in the same cluster, and it only takes a few false positive
connections to cause every R to be assigned the same label.
We therefore need a way of using all our inferred values of
pij to find a clustering robust to false positives. For this task,
we use correlation clustering.

Correlation clustering describes a family of clustering
algorithms which rely on pairwise similarities between data
points to both find optimal groupings and to estimate the
number of clusters [8]. Given an affinity matrix W , where
Wij ∈ [−∞,∞] represents a degree of attraction (+ve
values) or repulsion (−ve values) between data points i and j,
a correlation clustering clustering algorithm finds a labelling
of the data points Y = {y1, . . . , yM} which minimizes the
energy function

E(Y) = −
M∑
i=1

M∑
j=1

Wij [yi = yj]. (4)

We follow [7] in interpreting Wij as the log-odds ratio
between the probability distribution over positive pairs and
negative pairs; i.e. Wij = log

(
pij

1−pij

)
.

We use the Adaptive-Label ICM solver proposed by Bagon
and Galun [7]. Based on earlier work by Besag [20], AL-ICM
is a greedy iterative solver which changes the label of each
yi in turn to the label which minimises the energy E(Y) the
most. In addition to the labels already existing in Y , yi can
also be assigned to a new singleton label. This continues
until the energy cannot be lowered any further. We add a
novel extension whereby the solver is run multiple times
with different random initial labellings; the solution with the
lowest overall energy is then chosen. This helps to avoid
local minima.

A benefit of our formulation is that it will automatically
handle outliers. An outlying region Rk is one which should
not be placed in any cluster, either due to not representing
an object, or because there are no other objects of that class
in the dataset. Such segments will have a low value of pik
for all i, and hence the energy in (4) will be minimised by
assigning them unique, singleton labels.

E. Recovering the object templates

Each region in each resulting cluster forms part of the
template model for that object. These could be used to
discover new instances of this object in frames which did
not form part of the original test set, or be presented to a
human user for semantic labelling. We defer such tasks for
further work.

V. TRAINING AND TEST DATA

In this section we introduce the training and test datasets
which we use to evaluate our algorithm.

A. Training dataset

Our training set is formed using a total of 3100 views
of 155 randomly-chosen unique objects from the RGB-D
dataset [1]. Each masked region from this training dataset
represents a full (i.e. well-segmented and unoccluded) view
of an object, and has an associated instance label yi such as
apple 3 or food jar 1. A random 37,500 positive pairs
(yij = 1) and 37,500 negative pairs (yij = 0) are used to
train the Random Forest classifier.

B. Test datsets

We use two separate test datasets, one consisting of preseg-
mented objects, and the other consisting of RGB-D images
of real scenes. We want to demonstrate the generalizability of
our system in grouping object types which did not form part
of the training set. To show this effectively, we ensure that
neither of our test sets contain any overlap with the training
set at either the instance or category level. For example, a
‘notebook’ instance is included in the training set; therefore
no notebooks are present in either test set.

Fully segmented dataset D1: This dataset contains 100
randomly selected masked regions representing 10 different
object instances, and is taken from the same dataset as
the training data. For this well-segmented dataset we set
Pr(ξi) = 1 for all values of i.

Real-world scene dataset D2: This comprises a subset
of 21 frames from the 8 video sequences accompanying the
RGB-D object dataset [1]. We augment these images with 15
new RGB-D images, representing more views of household
objects in indoor scenarios (see Fig. 1 for examples). The
frames are mostly non-overlapping, although some view the
same environment but from highly differing angles.

After the segmentation stage of our algorithm on D2, we
assign ground truth labelling. Each Ri is given a label k
iff it has a > 70% overlap with a ground truth region with
label k. Regions which are left unassigned to any class are
given a unique, singleton label for the purposes of clustering
evaluation, and are separately denoted as being ’clutter’ for
evaluation of the unary classifier.

VI. EVALUATION

To evaluate the output of the clustering algorithms, we
use the Adjusted Rand Index (ARI) [21], a continuous
measure of similarity of partitionings. ARI = 1 indicates
a partitioning of the data equal to the ground truth, while
ARI = 0 indicates a partitioning no better than chance.

A. Clustering evaluation on dataset D1

We compare our correlation clustering algorithm with
more commonly used clustering algorithms; in particular,
we compare with k-means due to its ubiquity, and spectral
clustering [9] and affinity propagation [10] due to their recent

(a) Spin images

[10 clusters]

min maxλ
0

1

ARI

(b) Mean RGB

[10 clusters]

min maxλ

(c) Bounding box size

[8 clusters]

min maxλ

(d) RGB histogram

[10 clusters]

min maxλ

(e) HOG

[10 clusters]

min maxλ

(f) Shape distribution

[8 clusters]

min maxλ

LEGEND

k-means

Spectral
clustering
Correlation
clustering
Affinity
propagation

Fig. 3. Comparison of our correlation clustering implementation with other clustering methods, over a range of their parameter settings (see section VI-A
for details of λ settings). Results are shown for dataset D1; each plot (a)-(f) corresponds to a different feature. The number of clusters recovered by our
method (red line) is indicated. The ground truth labelling has 10 clusters. Higher values for adjusted Rand index are better.

(a) Dataset D1 results

[11 clusters]

min max
λ

0

1

ARI

(b) Dataset D2 results

Without unary scores

With unary scores

min max
λ

0

1

ARI

Fig. 4. Comparison of clustering algorithms on both datasets, using all
features. See section VI-A for details of λ settings. Line types are as
specified in Fig. 3.

use in object discovery algorithms. Algorithms which operate
in Euclidean feature space, such as k-means, are strongly
affected by the relative scaling of features. To provide a fair
comparison, we perform some experiments using only single
features.When using all features we scale each feature (e.g.
‘spin image histogram’ or ‘mean RGB’) to sum to one.

Each of our comparison algorithms accepts a single pa-
rameter λ. For k-means and spectral clustering, where λ
is the number of classes, we test each possible value (i.e.
λ = [1, 2, . . . ,M]). λ for affinity propagation is a measure
of ‘self-similarity’—for this we linearly interpolate 50 values
between 0.01 and 5.

Results using single features to cluster segmented objects
in D1 are shown in Fig. 3, and a confusion matrix for this
clustering is presented in Fig. 5(a). Using single features, our
method is only outperformed when ‘mean RGB’ and ‘shape
distributions’ are used, and even then only with a small range
of λ values. On D1, the RGB histogram appears to be the
feature with the most discriminatory power. This is most
likely due to the highly controlled conditions under which
this data was captured [1]. We then combine all features and
repeat the experiment (Fig. 4(a)). Our algorithm maintains a
superior performance over competing clustering algorithms.

B. Segmentation and unary terms on scenes dataset D2

Of the 105 instances of objects in dataset D2, 85 are
segmented well enough to be given an object label, according
to section V-B. Of these 85 regions, 9 have unique object
labels not shared with any other region. In addition to these
85 ’object’ regions, there were 94 ’clutter’ regions found

which did not share a good enough overlap with a ground
truth object to be given a label. We assessed the quality of the
Pr(ξ) classifier (section IV-C.2) at discriminating between
‘object’ and ‘clutter’; the area under the receiver operating
characteristic curve was found to be 0.754.

C. Evaluation on scenes dataset D2

We then evaluate our clustering algorithm on D2, using
the same method as for D1. Results are presented in Fig.
4(b). As with D1, we outperform our comparison clustering
methods, managing to successfully recover many object
types. We present a confusion matrix comparing the clusters
we recovered with the ground truth clustering in Fig. 5(b).
Some objects successfully recovered are presented in Figs.
6(a-c) and 2(d), and some results in the context of the original
RGB-D images are delineated in Fig. 1.

Failures can occur for a number of reasons. False negatives
in the pairwise matching can occur when two regions depict
the same object but with very different segmentations, or
viewed under different lighting conditions (e.g. Fig. 7(c)).
Pairwise false positives most frequently occur when the
unary probabilities Pr(ξi) are incorrectly high, causing pairs
of background clutter to be incorrectly given a high pij
value—see Fig. 7(b) for an example of this.

Enough false positives cause errors in the final clustering.
The cluster shown in Fig. 6(d), for example, is formed
of background segments which score highly on both the
conditional pairwise term Pr(yij | ξi ∧ ξj) and the unary
terms Pr(ξi) and Pr(ξj). In this instance, forming a better
estimate of Pr(ξi), perhaps trained on scenes more similar
to our test data, could help prevent these kinds of errors.

D. Timings and complexity

Our segmentation and feature computation routines were
coded in MATLAB and took on average 1.59s and 10.8s per
image respectively. The O(M2) Random Forest classification
and correlation clustering took 1.26s and 10.8s respectively
when run on dataset D2. All experiments were performed
on a machine with a 2.4 GHz Intel i5 processor, with 8 GB
of RAM.

VII. CONCLUSIONS AND FURTHER WORK

In this paper with have developed and demonstrated a
method for object discovery in RGB-D data. Unlike previous
supervised learning methods, which are trained on individual

G
ro

u
n
d
 t
ru

th
 c

la
s
s

Predicted cluster

12

11

4 4

10

7

1 10

10

8

10

13

a b c d e f g h i j k

coffee_mug_2

bell_pepper_2

apple_5

cell_phone_3

bowl_2

calculator_1

cap_3

cell_phone_5

cap_4

cap_1

(a) Correlation clustering results on dataset D1

G
ro

un
d

tru
th

 c
la

ss

Predicted class

2
2

3
4

1 1
1 1

2 1
1 1

1 1
3

4
2

2
2 2

1 3
2

5
2

4 1
2

2
1 2

2 1
3 1

2
4 1

4 1 2 1 1 2 2 3 4 2 3 4 9 2 2 7 1 1 52
OUTLIERS 63 (4) (2) (6) (6) (2) (2) (2) (2) (2) (3) (4) (2) (2) (2) (2) (5)(11) (2) (7) (2) (2) (5) (2) (3) (2) (4) (4) (9) (2) (2) (7) (2) (2)

Black torch (2)
Blue bowl (2)
Blue torch (3)

Crunch box (4)
Lantern (2)

Mountain dew (2)
Mouse (3)

Paper plates (2)
Pepsi can (2)
Pink torch (3)

Red cap (4)
Red mug (2)

Shower gel (2)
Slipper (4)

Small white bowl (4)
Spray (2)

Stapler (5)
Tea box (2)

Tissue box (5)
Washing bowl (2)

Washing powder (2)
White bowl (3)
White cap (3)

White mug (4)
White mug 2 (2)
Yellow torch (5)

OUTLIERS (103)

(b) Correlation clustering results on dataset D2

Fig. 5. Confusion matrices for the object discovery performed on our data,
using all features. Each row represents a ground truth class, each column a
found cluster; numbers in the grid represent assignment of items to ground
truth and found clusters. A perfect result would be a square matrix with only
on-diagonal entries. For D2, outliers (i.e. singleton segments) are combined
into the final row (ground truth) and final column (predicted)—otherwise,
the ordering of rows and columns is arbitrary.

(a) (b) (c) (d) (e) (f)

Fig. 6. Some clusters found from dataset D2. (a)-(c) show well grouped
clusters, of classes ‘Yellow torch’, ‘White hat’ and ‘Red mug’. (d) shows
a cluster formed from a failure of the unary scores—none of the items in
the cluster represent a real object. (e) and (f) show poor groupings due to
failures in pairwise scores.

classes of a known fixed number, we merely learn the
information about whether pairs of objects are the same or
not. This means that the number of classes is not fixed,
and novel classes can be discovered at test time. Unlike
many other scene understanding methods, we do not need
to specify the number of classes present.

For future work, we would like to investigate the im-
provements and extensions we suggest in sections VI-C and
IV-E, such as improving the quality of the unary scoring.
In addition to these areas, we would like to increase the
number of test images used to explore the possibility of
object discovery on a very large scale dataset. We are also
interested in the possibilities for online learning using this
algorithm, discovering objects ‘on-the-fly’ as a series of
images are presented into the system.

yij = 1 yij = 0

pij > 0.5
(a) True positive (75) (b) False positive (638)

pij < 0.5
(c) False negative (13) (d) True negative (15,205)

Fig. 7. Pairwise results examples on regions from D2 comparing predicted
outputs with ground truth. Numbers in brackets indicate the number of pairs
falling into each category.

Acknowledgements: The authors would like to thank
Yannick Verdie, Sara Vicente, and Gabriel Brostow and his
group at UCL, for their extremely valuable discussions and
contributions to the paper.

REFERENCES

[1] K. Lai, L. Bo, X. Ren, and D. Fox, “A large-scale hierarchical multi-
view RGB-D object dataset,” in International Conference on Robotics
and Automation (ICRA), 2011.

[2] “IKEA FAQ,” http://www.ikea.com/ms/en AU/customer service/need
help/faq.html#0008, 2012, accessed: 20/02/2013.

[3] J. Shin, R. Triebel, and R. Siegwart, “Unsupervised discovery of repet-
itive objects,” in International Conference on Robotics and Automation
(ICRA), 2010.

[4] E. Herbst, X. Ren, and D. Fox, “RGB-D object discovery via multi-
scene analysis,” in Intelligent Robots and Systems (IROS), 2011.

[5] H. Kang, M. Hebert, and T. Kanade, “Discovering object instances
from scenes of daily living,” in International Conference on Computer
Vision (ICCV), 2011.

[6] F. Endres, C. Plagemann, C. Stachniss, and W. Burgard, “Unsupervised
discovery of object classes from range data using latent Dirichlet
allocation,” in Robotics Science and Systems (RSS), 2009.

[7] S. Bagon and M. Galun, “Large scale correlation clustering optimiza-
tion,” Arxiv preprint arXiv:1112.2903, vol. abs/1112.2903, 2011.

[8] N. Bansal, A. Blum, and S. Chawla, “Correlation clustering,” in
Machine Learning, 2002.

[9] A. Y. Ng, M. I. Jordan, and Y. Weiss, “On Spectral Clustering:
Analysis and an algorithm,” in Neural Information Processing (NIPS),
2001.

[10] B. J. Frey and D. Dueck, “Clustering by passing messages between
data points,” Science, vol. 315, p. 2007, 2007.

[11] R. Triebel, J. Shin, and R. Siegwart, “Segmentation and unsupervised
part-based discovery of repetitive objects,” in Robotics Science and
Systems (RSS), 2010.

[12] J. B. MacQueen, “Some methods for classification and analysis of
multivariate observations,” in Berkeley Symposium on Mathematical
Statistics and Probability, vol. 233, 1967.

[13] S. Vicente, C. Rother, and V. Kolmogorov, “Object cosegmentation,”
in Computer Vision and Pattern Recognition (CVPR), 2011.

[14] L. Breiman, “Random Forests,” Machine learning, vol. 45, no. 1, 2001.
[15] A. Collet, B. Xiong, C. Gurau, M. Hebert, and S. S. Srinivasa,

“Exploiting domain knowledge for object discovery,” in International
Conference on Robotics and Automation (ICRA), 2013.

[16] N. Silberman, D. Hoiem, P. Kohli, and R. Fergus, “Indoor seg-
mentation and support inference from RGBD images,” in European
Conference on Computer Vision (ECCV), 2012.

[17] A. Johnson and M. Hebert, “Using spin images for efficient object
recognition in cluttered 3D scenes,” Pattern Analysis and Machine
Intelligence (PAMI), vol. 21, no. 5, 1999.

[18] R. Osada, T. Funkhouser, B. Chazelle, and D. Dobkin, “Matching 3D
models with shape distributions,” in Shape Modeling International,
2001.

[19] H. Bostrom, “Estimating class probabilities in Random Forests,” in
Conference on Machine Learning and Applications, 2007.

[20] J. Besag, “On the statistical analysis of dirty pictures,” pp. 259–302,
1986.

[21] L. Hubert and P. Arabie, “Comparing partitions,” Journal of Classifi-
cation, vol. 2, 1985.

